问题描述
小H和小W来到了一条街上,两人分开买菜,他们买菜的过程可以描述为,去店里买一些菜然后去旁边的一个广场把菜装上车,两人都要买n种菜,所以也都要装n次车。具体的,对于小H来说有n个不相交的时间段,...在装车,对于小W来说有n个不相交的时间段,...在装车。其中,一个时间段[s, t]表示的是从时刻s到时刻t这段时间,时长为t-s。
由于他们是好朋友,他们都在广场上装车的时候会聊天,他们想知道他们可以聊多长时间。
输入格式
输入的第一行包含一个正整数n,表示时间段的数量。
接下来n行每行两个数,,描述小H的各个装车的时间段。
接下来n行每行两个数,,描述小W的各个装车的时间段。
输出格式
输出一行,一个正整数,表示两人可以聊多长时间。
样例输入
4
1 3
5 6
9 13
14 15
2 4
5 7
10 11
13 14
样例输出
3
数据规模和约定
对于所有的评测用例,1 ≤ n ≤ 2000, ,对于所有的i(1 ≤ i ≤ n)有,1 ≤ ≤ 1000000。
方法一
#include <bits/stdc++.h>
using namespace std;
#define M 1000002
int n, v[M], a, b, ans = 0;
//其实这题直接按照给定的区间填充、查询要更快一点,因为差分需要遍历完整个数组,而前者最坏的情况下才需要遍历完整个数组
int main() {
memset(v, 0, sizeof(v));
cin >> n;
n *= 2;
for (int i = 1; i <= n; ++i) {
scanf("%d%d", &a, &b);
++v[a], --v[b];//注意这里由于题目的特点,和一般的差分有所不同
}
for (int i = 1; i < M; ++i) {
v[i] += v[i - 1];
if (v[i] == 2)
++ans;
}
cout << ans;
return 0;
}
方法二
#include <bits/stdc++.h>
using namespace std;
int h[1000005];
int a, b, c, d, n, ans = 0;
int main() {
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
scanf("%d%d", &a, &b);
for (int i = a + 1; i <= b; i++)
h[i] = 1;
}
for (int i = 1; i <= n; i++) {
scanf("%d%d", &c, &d);
for (int i = c + 1; i <= d; i++)
ans += h[i];
}
cout << ans;
return 0;
}